Conduction velocity of low-threshold motor units during ischemic contractions performed with surface EMG feedback.
نویسندگان
چکیده
The aim of this study was to analyze the effect of ischemia on low-threshold motor unit conduction velocity. Nine subjects were trained to isolate the activity of a single motor unit (target motor unit) in the abductor pollicis brevis muscle with feedback on surface EMG signals recorded with a 16-electrode linear array. After training, the subjects activated the target motor unit at approximately 8 pulses per second (pps) for five 3-min-long contractions. During the third and fourth contractions, a cuff inflated at 180 mmHg around the forearm induced ischemia of the hand. The exerted force (mean +/- SE, 4.6 +/- 2.1% of the maximal voluntary contraction force), discharge rate (8.6 +/- 0.4 pps), interpulse interval variability (34.8 +/- 2.5%), and peak-to-peak amplitude of the target motor unit action potentials (176.6 +/- 18.2 microV) were not different among the five contractions. Conduction velocity, mean power spectral frequency, and action potential duration were the same in the beginning of the five contractions (2.8 +/- 0.2 m/s, 195.2 +/- 10.5 Hz, and 5.4 +/- 0.3 ms, respectively) and changed over the 3 min of sustained activation only during the fourth contraction. Conduction velocity and mean power spectral frequency decreased (10.05 +/- 1.8% and 8.50 +/- 2.18% during the 3 min, respectively) and action potential duration increased (8.2 +/- 4.6% in the 3 min) during the fourth contraction. In conclusion, 1) subjects were able to isolate the activity of a single motor unit with surface EMG visual feedback in ischemic conditions maintained for 16 min, and 2) the activation-induced decrease in single motor unit conduction velocity was significantly larger with ischemia than with normal circulation, probably due to the alteration of mechanisms of ion exchange across the fiber membrane.
منابع مشابه
Adjustments differ among low-threshold motor units during intermittent, isometric contractions.
We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded f...
متن کاملLow-threshold motor unit membrane properties vary with contraction intensity during sustained activation with surface EMG visual feedback.
Single-motor unit (MU) activities were detected from the abductor pollicis and abductor digiti minimi muscles providing the subjects with visual feedback of multichannel surface electromyogram (EMG) signals. The subjects could modulate the force to observe on the surface recordings a single dominant MU and modulate its firing rate for contractions of 300 s with a noninvasive EMG feedback. The f...
متن کاملConduction velocity of quiescent muscle fibers decreases during sustained contraction.
We tested the hypothesis that conduction velocity of quiescent muscle fibers decreases during sustained contraction due to the activity of the active motor units in the muscle. Ten subjects trained for the identification of a target motor unit in the abductor pollicis brevis with feedback on surface EMG signals detected with a two-dimensional array of 61 electrodes. The subjects activated the t...
متن کاملHIGHLIGHTED TOPIC Neural Control of Movement Low-threshold motor unit membrane properties vary with contraction intensity during sustained activation with surface EMG visual feedback
Farina, Dario, Marco Gazzoni, and Federico Camelia. Lowthreshold motor unit membrane properties vary with contraction intensity during sustained activation with surface EMG visual feedback. J Appl Physiol 96: 1505–1515, 2004. First published December 12, 2003; 10.1152/japplphysiol.01047.2003.—Single-motor unit (MU) activities were detected from the abductor pollicis and abductor digiti minimi m...
متن کاملCounterpoint: Spectral Properties of the Surface Emg Do Not Provide Information about Motor Unit Recruitment and Muscle Fiber Type
The surface electromyogram (EMG) comprises the sum of the electrical contributions made by the active motor units to the interference signal detected by electrodes placed on the skin overlying the muscle. Because it provides a global measure of motor unit activity, this signal is a valuable tool for assessing the level of muscle activation. The analysis of the surface EMG in the frequency domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2005